lacoco-lab

ELLIS Pre-NeurIPS Session at Saarbrücken, 2024

Information

WHEN: November 25, 2024, 14:00-17:00

WHERE: Building C7.4 at Saarland University Campus, Conference Room 1.17 and Foyer

This event is part of ELLIS Pre-NeurIPS Fest 2024.

Program

The following posters will be presented.

Title Authors
Auditing Empirical Privacy Protection of Private LLM Adaptations Bartłomiej Marek, Vincent Hanke, Xun Wang, Michael Backes, Adam Dziedzic, Franziska Boenisch
B-cosification: Transforming Deep Neural Networks to be Inherently Interpretable Shreyash Arya, Sukrut Rao, Moritz Böhle, Bernt Schiele
How Do Training Methods Influence the Utilization of Vision Models? Paul Gavrikov, Shashank Agnihotri, Margret Keuper, Janis Keuper
The Expressive Capacity of State Space Models: A Formal Language Perspective Yash Sarrof, Yana Veitsman, Michael Hahn
Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models Dominik Hintersdorf, Lukas Struppek, Kristian Kersting, Adam Dziedzic, Franziska Boenisch
InversionView: A General-Purpose Method for Reading Information from Neural Activations Xinting Huang, Madhur Panwar, Navin Goyal, Michael Hahn
Language Models as Zero-shot Lossless Gradient Compressors: Towards General Neural Parameter Prior Models Hui-Po Wang, Mario Fritz
Learning Better Representations From Less Data For Propositional Satisfiability Mohamed Ghanem, Frederik Schmitt, Julian Siber, Bernd Finkbeiner
LLM Dataset Inference: Detect Datasets, not Strings Pratyush Maini, Hengrui Jia, Nicolas Papernot, Adam Dziedzic
Localizing Memorization in SSL Vision Encoders Wenhao Wang, Adam Dziedzic, Michael Backes, Franziska Boenisch
Open LLMs are Necessary for Private Adaptations and Outperform their Closed Alternatives Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola Emmanuel Olatunji, Michael Backes, Adam Dziedzic
Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets Wolfgang Boettcher, Lukas Hoyer, Ozan Unal, Jan Eric Lenssen, Bernt Schiele
Separations in the Representational Capabilities of Transformers and Recurrent Architectures Satwik Bhattamishra, Michael Hahn, Phil Blunsom, Varun Kanade
SoLAR: Surrogate Label Aware GNN Rewiring Celia Rubio-Madrigal, Adarsh Jamadandi, Rebekka Burkholz
Spectral Graph Pruning Against Over-Squashing and Over-Smoothing Adarsh Jamadandi, Celia Rubio-Madrigal and Rebekka Burkholz
Stabilized Proximal Point Methods for Federated Optimization Xiaowen Jiang, Anton Rodomanov, Sebastian U. Stich
Training GNNs in Balance by Dynamic Rescaling Nimrah Mustafa, Rebekka Burkholz
Universality of AdaGrad Stepsizes for Stochastic Optimization: Inexact Oracle, Acceleration and Variance Reduction Anton Rodomanov, Xiaowen Jiang, Sebastian Stich
Pruning neural network models for gene regulatory dynamics using data and domain knowledge Intekhab Hossain, Jonas Fischer, Rebekka Burkholz, John Quackenbush
Causal Discovery from Event Sequences by Local Cause-Effect Attribution Joscha Cüppers, Sascha Xu, Ahmed Musa and Jilles Vreeken
NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory Navami Kairanda, Marc Habermann, Christian Theobalt, Vladislav Golyanik
Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation Sahar Abdelnabi, Amr Gomaa, Sarath Sivaprasad, Lea Schönherr, Mario Fritz

Organizing Committee